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Conceptual Overview

Training and Inference Pipelines
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DALL-E 2 Decoder Training
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DALL-E 2 Prior Inference
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DALL-E 2 Decoder Inference
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DALL-E 2 High Level Architecture Description

* DALL-E 2: proposed text-to-image architecture by OpenAl that contains two trainable
components: a prior and decoder.

* Prior: Learns to generate image embeddings conditioned on the text embedding and timestep.

* Training: A Transformer that takes in a noisy CLIP image embedding (real image embedding with noise added as defined
according to the DDPM forward noising process), a clean CLIP text embedding, and timestep index (randomly sampled)

and learns to either predict the noise in the CLIP image embedding or the denoised image embedding (either output type
works; explained more in future slides).

* Inference: The trained Transformer that takes in a pure Gaussian noise vector, the same (frozen) CLIP text embedding
conditioned on the input caption, and the time step we are sampling from (decrementing from T to 0) that learns to
transform random noise into a semantically-meaningful image embedding via a diffusion process.

* Decoder: Learns to reconstruct an image from random noise, conditioned on a CLIP image embedding
and timestep.

» Training: A U-Net that takes in real (encoded) images that have been noised according to the DDPM forward noising
process, CLIP image embeddings, and timesteps and learns (through a diffusion process) to predict a clean image or the
noise (either output type works; explained more in future slides).

* Inference: The trained U-Net that takes in pure Gaussian noise, the predicted image embedding (from the prior), and the
timestep and outputs afinal generated image.

* CLIP encoder model-a shared, fixed/non-trainable, and high-dimensional feature space
between the prior and decoder.

* Important Note: During training, we train the prior and decoder separately (with different

training objectives); we only use them together during inference, when the prior’s output
conditions the decoder.



Implementation: Phase |

Building an MVP



class TimestepEmbedder(nn.Module):
* Input: dim = 512
* Methods:
« forward(t € RBD)>¢, . € RBAM

* Used by Prior, Decoder

class CLIPEncoder:
* |nput: None; | am using a trained CLIP Encoder from OpenCLIP with an embedding
dimensionality of 512.
* Methods:
* encode_text(list of N text prompts (strings)) -> z;,; € R(¥:512)
- encode_images(list of N images (List[PIL.Image])) -> z;,; € RW:512)
* @property; dim() -> 512 (for ease of use for other classes to query dimensionality)




class NoiseScheduler:

e |nput: T = 1000
 Methods:
« get_beta_t(t € ZB) n)-> B, € RB)
 get alpha_t(t € Z® n)->a, € RB
« get_alpha_bar_t(t € Z®),n)->a, € R®

class DDIMSampler:
* Input: noise scheduler (NoiseScheduler)
* Methods:

- sample(model, Zong € RE512), shape,yipus, steps € Z) -> x, € RSMaPe




class Prior(nn.Module):
* |Inputs: T € Z
* Methods:
o forward(Zeg X¢, temp) -> €9 € R >12) (predicted CLIP embedding noise)
* Onedenoising step
* sample(zey, t) -> Zimg € RB:312) (predicted CLIP image embedding)
* Fulldenoising process

class Decoder(nn.Module):
* |Inputs: T € Z
* Methods:
« forward(X¢ img Zimg, temp) => €9 € RE3W) (predicted noise in pixel space)
* sample(zyng, steps, eta € [0,1)) -> xo € RE3AW) (predicted clean image in pixel space)




class PriorTransformer(nn.Module):
* Inputs:dim = 512,depth = 6, heads = 8
 Methods:
o forward(Zext, Z¢, temp) ->€g € R >12) (predicted CLIP embedding noise)

class DecoderUNet(nn.Module):

Inputs: z¢ img, Zimg, temp
¢ Methods:
o forward(X; img» Zimgr temp) ->€¢ € RE3HW) (predicted noise in pixel space)




class DALLe2:

* |nputs: prior_path (string), decoder_path (string), CLIP encoder (CLIPEncoder), prior_sampler
(DDIMSampler for latent), decoder_sampler (DDIMSampler for pixel space)
* Methods:
* generate(prompts (list of N string prompts), # of steps (int), n € [0,1)) -> X, € RW.3,H,W)
 _encode_text(prompts (list of N string prompts)) -> z,,, € R(V:512)
 _encode_images(images (list of N PIL Images)) -> zj;,4 € RN.512)

class DALLe2Trainer:

* |nputs: model (Prioror Decoder), model_type (“prior” or “decoder”), optimizer
(torch.optim.Optimizer()), noise_scheduler (NoiseScheduler), sampler (DDIMSampler),
dataloader (torch.utils.data.DatalLoader), is_aws (bool = False), save_dir (str), log_interval (int)

* Methods:

* train(hum_epochs (int)) -> None
e train_one_epoch(epoch_i (int)) -> None
* train_step(batch (dict)) -> loss (float)
* batch (prior): {z, € R®B512) 7 . € R(B512) ¢ 7(B) ¢ ¢ R(BS12))
- batch (decoder): {x; € REZHW) 7, € RES12) ¢t € 7B x) € REIHW))




Directory Structure (for Maximum Organization)

* dalle_2_new/ # Once complete, change to dalle_2/
* models/
* dalle2.py
* prior.py
* prior_transformer.py
* decoder.py
* decoder_unet.py
* timestep_embedding.py
* clip_encoding.py
* sampling/
* ddim_sampler.py
* noise_scheduler.py
e training/
* train_prior.py
* train_decoder.py
* trained_models/
e *.pth
* data/
* abs_dataset.py
* [dataset name 1].py
[dataset name 2].py

[dataset name N].py
* dataset.py

* inference/
* generate.py
* generations/

* *Jpg
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