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DALL·E 2 High Level Architecture Pyramid
DALL·E 2 (Text-to-
Image Generator)

Decoder (Image 
Generator)

Diffusion Prior (Text-
to-Image-

Embedding Mapper)

DDPM (Diffusion 
Training Framework) 
+ DDIM (Inference)

Transformer (Prior’s 
Denoising Model)

U-Net (Decoder’s 
Denoising Model)

DDPM (Diffusion 
Architecture) + 

DDIM (Inference)



Conceptual Overview
Training and Inference Pipelines



DALL·E 2 Prior Training

CLIP Encoder
(I am using a 
trained open-
source model 
from Hugging 

Face)

Text Prompts: 
e.g., [[‘orange’, 

‘panda’, 
‘skiing’], [‘red’, 

‘sportscar’], 
[‘human’, ‘with’, 
‘five’, ‘arms’], …]

Corresponding 
Images:

Tensor(B, 3, H, W)

Text 
Embeddings: 

Tensor(B, 512)

Image 
Embeddings: 

Tensor(B, 512)

Image 
Width 
(pixels)

Image 
Height 
(pixels)

Color 
channels 
(3 for 
RGB)

Batch 
Size

Embedding 
dimensionality

Denoising 
Decoder-only 
Transformer 
(with Causal 

Attention)

Predicted Noise in 
the CLIP Image 

Embeddings, 𝜀𝜃: 
Tensor(B, 512)

Sampled 
Noise Vector 

(used to 
corrupt the 
CLIP Image 

Embeddings)

True Noise of the 
CLIP Image 

Embeddings, 𝜀: 
Tensor(B, 512)

ℒ𝑝𝑟𝑖𝑜𝑟 = 𝑀𝑆𝐸(𝜀𝜃, 𝜀)

Noise is added to the Image Embeddings 
according to the DDPM forward noising schedule

Timestep Vector: 
Tensor(B)
t ~ U(0, T)

Sinusoidal 
Embedding 

(Fixed):
Tensor(B,12

8)

nn.Linear(128, 512),
nn.SiLU(),

nn.Linear(512, 512)
Projected Timestep Embeddings: 
Tensor(B, 512)



DALL·E 2 Decoder Training

CLIP Encoder
(I am using a 
trained open-
source model 
from Hugging 

Face)Corresponding 
Images:

Tensor(B, 3, H, W)

Image 
Embeddings: 

Tensor(B, 512)

Denoising U-
Net

Timestep Vector: 
Tensor(B)
t ~ U(0, T)

Noisy Images 
Tensor(B, 3, H, W)Noise is added to the images according 

to the DDPM forward noising schedule

Predicted Clean 
Images, ො𝑥0.

Ground Truth 
Clean Images, 𝑥0.

ℒ𝑑𝑒𝑐𝑜𝑑𝑒𝑟 = 𝑀𝑆𝐸( ො𝑥0, 𝑥0)

Sinusoidal 
Embedding (Fixed):

Tensor(B,128)

nn.Linear(128, 512),
nn.SiLU(),

nn.Linear(512, 512)
Projected Timestep 
Embeddings: 
Tensor(B, 512)



DALL·E 2 Prior Inference

CLIP Encoder
(I am using a 
trained open-
source model 
from Hugging 

Face)

Text Prompts: 
e.g., [[‘orange’, 

‘panda’, 
‘skiing’], [‘red’, 

‘sportscar’], 
[‘human’, ‘with’, 
‘five’, ‘arms’], …]

Text 
Embeddings: 

Tensor(B, 512)

Pure 
Gaussian 

Noise Vector 
at timestep T: 

Tensor(B, 
512)

𝑧𝑇~𝑁(0, 𝐼)

Trained 
Denoising 

Decoder-only 
Transformer 
(with Causal 

Attention)

Predicted CLIP 
Image 

Embeddings, 𝑧𝑖𝑚𝑔: 
Tensor(B, 512)

Timestep Vector: 
Tensor(B)
t ~ U(0, T)

Sinusoidal 
Embedding 

(Fixed):
Tensor(B,12

8)

nn.Linear(128, 512),
nn.SiLU(),

nn.Linear(512, 512)
Projected Timestep Embeddings: 
Tensor(B, 512)



DALL·E 2 Decoder Inference

Denoising U-
Net

Pure Noise 
Images Tensor(B, 

3, H, W)

Generated Images: 
Tensor(B, 3, H, W)

Design Modification: The DALL·E 2 paper 
describes multiple U-Nets to up-sample 
from lower resolutions to higher, but that 
choice is designed for 1024x1024 images. 
I only use one U-Net as I am generating a 
maximum image resolution of either 
128x128 or 256x256.

Timestep Vector: 
Tensor(B)
t ~ U(0, T)

Sinusoidal 
Embedding 

(Fixed):
Tensor(B,128)

nn.Linear(128, 512),
nn.SiLU(),

nn.Linear(512, 512)

Projected Timestep Embeddings: 
Tensor(B, 512)



DALL·E 2 High Level Architecture Description
• DALL·E 2: proposed text-to-image architecture by OpenAI that contains two trainable 

components: a prior and decoder.
• Prior: Learns to generate image embeddings conditioned on the text embedding and timestep.

• Training: A Transformer that takes in a noisy CLIP image embedding (real image embedding with noise added as defined 
according to the DDPM forward noising process), a clean CLIP text embedding, and timestep index (randomly sampled) 
and learns to either predict the noise in the CLIP image embedding or the denoised image embedding (either output type 
works; explained more in future slides).

• Inference: The trained Transformer that takes in a pure Gaussian noise vector, the same (frozen) CLIP text embedding 
conditioned on the input caption, and the time step we are sampling from (decrementing from T to 0) that learns to 
transform random noise into a semantically-meaningful image embedding via a diffusion process.

• Decoder: Learns to reconstruct an image from random noise, conditioned on a CLIP image embedding 
and timestep.

• Training: A U-Net that takes in real (encoded) images that have been noised according to the DDPM forward noising 
process, CLIP image embeddings, and timesteps and learns (through a diffusion process) to predict a clean image or the 
noise (either output type works; explained more in future slides).

• Inference: The trained U-Net that takes in pure Gaussian noise, the predicted image embedding (from the prior), and the 
timestep and outputs a final generated image.

• CLIP encoder model–a shared, fixed/non-trainable, and high-dimensional feature space 
between the prior and decoder.

• Important Note: During training, we train the prior and decoder separately (with different 
training objectives); we only use them together during inference, when the prior’s output 
conditions the decoder.



Implementation: Phase I
Building an MVP



class TimestepEmbedder(nn.Module):
• Input: 𝑑𝑖𝑚 = 512
• Methods:

• forward(𝑡 ∈ ℝ(𝐵,1)) -> 𝑡𝑒𝑚𝑏 ∈ ℝ(𝐵,𝑑𝑖𝑚)

• Used by Prior, Decoder

class CLIPEncoder:
• Input: None; I am using a trained CLIP Encoder from OpenCLIP with an embedding 

dimensionality of 512.
• Methods: 

• encode_text(list of N text prompts (strings)) -> 𝑧𝑡𝑥𝑡 ∈ ℝ(𝑁,512)

• encode_images(list of N images (List[PIL.Image])) -> 𝑧𝑖𝑚𝑔 ∈ ℝ(𝑁,512)

• @property; dim() -> 512 (for ease of use for other classes to query dimensionality)



class NoiseScheduler:
• Input: 𝑇 = 1000
• Methods:

• get_beta_t(𝑡 ∈ ℤ 𝐵 , 𝜂) -> 𝛽𝑡 ∈ ℝ(𝐵)

• get_alpha_t(𝑡 ∈ ℤ(𝐵), 𝜂) -> 𝛼𝑡 ∈ ℝ(𝐵)

• get_alpha_bar_t(𝑡 ∈ ℤ(𝐵), 𝜂) -> ത𝛼𝑡 ∈ ℝ(𝐵)

class DDIMSampler:
• Input: noise scheduler (NoiseScheduler)
• Methods:

• sample(𝑚𝑜𝑑𝑒𝑙, 𝑧𝑐𝑜𝑛𝑑 ∈ ℝ 𝐵,512 , 𝑠ℎ𝑎𝑝𝑒𝑜𝑢𝑡𝑝𝑢𝑡, 𝑠𝑡𝑒𝑝𝑠 ∈ ℤ) -> 𝑥𝑡 ∈ ℝ𝑠ℎ𝑎𝑝𝑒



class Prior(nn.Module):
• Inputs: 𝑇 ∈ ℤ
• Methods:

• forward(𝑧𝑡𝑥𝑡, 𝑥𝑡, 𝑡𝑒𝑚𝑏) -> 𝜀𝜃 ∈ ℝ(𝐵, 512) (predicted CLIP embedding noise)
• One denoising step

• sample(𝑧𝑡𝑥𝑡, 𝑡) -> Ƹ𝑧𝑖𝑚𝑔 ∈ ℝ(𝐵, 512) (predicted CLIP image embedding)
• Full denoising process

class Decoder(nn.Module):
• Inputs: 𝑇 ∈ ℤ
• Methods:

• forward(𝑥𝑡 ,𝑖𝑚𝑔, 𝑧𝑖𝑚𝑔, 𝑡𝑒𝑚𝑏) -> 𝜀𝜃 ∈ ℝ(𝐵,3,𝐻,𝑊) (predicted noise in pixel space)
• sample(𝑧𝑖𝑚𝑔, 𝑠𝑡𝑒𝑝𝑠, 𝑒𝑡𝑎 ∈ [0,1)) -> 𝑥0 ∈ ℝ(𝐵,3,𝐻,𝑊) (predicted clean image in pixel space)



class PriorTransformer(nn.Module):
• Inputs: 𝑑𝑖𝑚 = 512, 𝑑𝑒𝑝𝑡ℎ = 6, ℎ𝑒𝑎𝑑𝑠 = 8
• Methods:

• forward(𝑧𝑡𝑥𝑡, 𝑧𝑡, 𝑡𝑒𝑚𝑏) ->𝜀𝜃 ∈ ℝ(𝐵, 512) (predicted CLIP embedding noise)

class DecoderUNet(nn.Module):
• Inputs: 𝑧𝑡,𝑖𝑚𝑔, 𝑧𝑖𝑚𝑔, 𝑡𝑒𝑚𝑏
• Methods:

• forward(𝑥𝑡 ,𝑖𝑚𝑔, 𝑧𝑖𝑚𝑔, 𝑡𝑒𝑚𝑏) ->𝜀𝜃 ∈ ℝ(𝐵,3,𝐻,𝑊) (predicted noise in pixel space)



class DALLe2:
• Inputs: prior_path (string), decoder_path (string), CLIP encoder (CLIPEncoder), prior_sampler 

(DDIMSampler for latent), decoder_sampler (DDIMSampler for pixel space)
• Methods:

• generate(prompts (list of N string prompts), # of steps (int), 𝜂 ∈ [0,1)) -> ො𝑥0 ∈ ℝ(𝑁,3,𝐻,𝑊)

• _encode_text(prompts (list of N string prompts)) -> 𝑧𝑡𝑥𝑡 ∈ ℝ(𝑁,512)

• _encode_images(images (list of N PIL Images)) -> 𝑧𝑖𝑚𝑔 ∈ ℝ(𝑁,512)

class DALLe2Trainer:
• Inputs: model (Prior or Decoder), model_type (“prior” or “decoder”), optimizer 

(torch.optim.Optimizer()), noise_scheduler (NoiseScheduler), sampler (DDIMSampler), 
dataloader (torch.utils.data.DataLoader), is_aws (bool = False), save_dir (str), log_interval (int)

• Methods:
• train(num_epochs (int)) -> None
• train_one_epoch(epoch_i (int)) -> None
• train_step(batch (dict)) -> loss (float)

• batch (prior): {𝑧𝑡 ∈ ℝ 𝐵,512 , 𝑧𝑡𝑥𝑡 ∈ ℝ 𝐵,512 , 𝑡 ∈ ℤ 𝐵 , 𝜀 ∈ ℝ(𝐵,512)}
• batch (decoder): {𝑥𝑡 ∈ ℝ 𝐵,3,𝐻,𝑊 , 𝑧𝑖𝑚𝑔 ∈ ℝ 𝐵,512 , 𝑡 ∈ ℤ 𝐵 , 𝑥0 ∈ ℝ(𝐵,3,𝐻,𝑊)} 



Directory Structure (for Maximum Organization)
• dalle_2_new/ # Once complete, change to dalle_2/

• models/
• dalle2.py
• prior.py
• prior_transformer.py
• decoder.py
• decoder_unet.py
• timestep_embedding.py
• clip_encoding.py

• sampling/
• ddim_sampler.py
• noise_scheduler.py

• training/
• train_prior.py
• train_decoder.py
• trained_models/

• *.pth
• data/

• abs_dataset.py
• [dataset name 1].py
• [dataset name 2].py
• …
• [dataset name N].py
• dataset.py

• inference/
• generate.py
• generations/

• *.jpg
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