
DALL·E 2-AWS Project:
DALL·E 2 Planning

Spencer Karofsky

DALL·E 2 High Level Architecture Pyramid
DALL·E 2 (Text-to-
Image Generator)

Decoder (Image
Generator)

Diffusion Prior (Text-
to-Image-

Embedding Mapper)

DDPM (Diffusion
Training Framework)
+ DDIM (Inference)

Transformer (Prior’s
Denoising Model)

U-Net (Decoder’s
Denoising Model)

DDPM (Diffusion
Architecture) +

DDIM (Inference)

Conceptual Overview
Training and Inference Pipelines

DALL·E 2 Prior Training

CLIP Encoder
(I am using a
trained open-
source model
from Hugging

Face)

Text Prompts:
e.g., [[‘orange’,

‘panda’,
‘skiing’], [‘red’,

‘sportscar’],
[‘human’, ‘with’,
‘five’, ‘arms’], …]

Corresponding
Images:

Tensor(B, 3, H, W)

Text
Embeddings:

Tensor(B, 512)

Image
Embeddings:

Tensor(B, 512)

Image
Width
(pixels)

Image
Height
(pixels)

Color
channels
(3 for
RGB)

Batch
Size

Embedding
dimensionality

Denoising
Decoder-only
Transformer
(with Causal

Attention)

Predicted Noise in
the CLIP Image

Embeddings, 𝜀𝜃:
Tensor(B, 512)

Sampled
Noise Vector

(used to
corrupt the
CLIP Image

Embeddings)

True Noise of the
CLIP Image

Embeddings, 𝜀:
Tensor(B, 512)

ℒ𝑝𝑟𝑖𝑜𝑟 = 𝑀𝑆𝐸(𝜀𝜃, 𝜀)

Noise is added to the Image Embeddings
according to the DDPM forward noising schedule

Timestep Vector:
Tensor(B)
t ~ U(0, T)

Sinusoidal
Embedding

(Fixed):
Tensor(B,12

8)

nn.Linear(128, 512),
nn.SiLU(),

nn.Linear(512, 512)
Projected Timestep Embeddings:
Tensor(B, 512)

DALL·E 2 Decoder Training

CLIP Encoder
(I am using a
trained open-
source model
from Hugging

Face)Corresponding
Images:

Tensor(B, 3, H, W)

Image
Embeddings:

Tensor(B, 512)

Denoising U-
Net

Timestep Vector:
Tensor(B)
t ~ U(0, T)

Noisy Images
Tensor(B, 3, H, W)Noise is added to the images according

to the DDPM forward noising schedule

Predicted Clean
Images, ො𝑥0.

Ground Truth
Clean Images, 𝑥0.

ℒ𝑑𝑒𝑐𝑜𝑑𝑒𝑟 = 𝑀𝑆𝐸(ො𝑥0, 𝑥0)

Sinusoidal
Embedding (Fixed):

Tensor(B,128)

nn.Linear(128, 512),
nn.SiLU(),

nn.Linear(512, 512)
Projected Timestep
Embeddings:
Tensor(B, 512)

DALL·E 2 Prior Inference

CLIP Encoder
(I am using a
trained open-
source model
from Hugging

Face)

Text Prompts:
e.g., [[‘orange’,

‘panda’,
‘skiing’], [‘red’,

‘sportscar’],
[‘human’, ‘with’,
‘five’, ‘arms’], …]

Text
Embeddings:

Tensor(B, 512)

Pure
Gaussian

Noise Vector
at timestep T:

Tensor(B,
512)

𝑧𝑇~𝑁(0, 𝐼)

Trained
Denoising

Decoder-only
Transformer
(with Causal

Attention)

Predicted CLIP
Image

Embeddings, 𝑧𝑖𝑚𝑔:
Tensor(B, 512)

Timestep Vector:
Tensor(B)
t ~ U(0, T)

Sinusoidal
Embedding

(Fixed):
Tensor(B,12

8)

nn.Linear(128, 512),
nn.SiLU(),

nn.Linear(512, 512)
Projected Timestep Embeddings:
Tensor(B, 512)

DALL·E 2 Decoder Inference

Denoising U-
Net

Pure Noise
Images Tensor(B,

3, H, W)

Generated Images:
Tensor(B, 3, H, W)

Design Modification: The DALL·E 2 paper
describes multiple U-Nets to up-sample
from lower resolutions to higher, but that
choice is designed for 1024x1024 images.
I only use one U-Net as I am generating a
maximum image resolution of either
128x128 or 256x256.

Timestep Vector:
Tensor(B)
t ~ U(0, T)

Sinusoidal
Embedding

(Fixed):
Tensor(B,128)

nn.Linear(128, 512),
nn.SiLU(),

nn.Linear(512, 512)

Projected Timestep Embeddings:
Tensor(B, 512)

DALL·E 2 High Level Architecture Description
• DALL·E 2: proposed text-to-image architecture by OpenAI that contains two trainable

components: a prior and decoder.
• Prior: Learns to generate image embeddings conditioned on the text embedding and timestep.

• Training: A Transformer that takes in a noisy CLIP image embedding (real image embedding with noise added as defined
according to the DDPM forward noising process), a clean CLIP text embedding, and timestep index (randomly sampled)
and learns to either predict the noise in the CLIP image embedding or the denoised image embedding (either output type
works; explained more in future slides).

• Inference: The trained Transformer that takes in a pure Gaussian noise vector, the same (frozen) CLIP text embedding
conditioned on the input caption, and the time step we are sampling from (decrementing from T to 0) that learns to
transform random noise into a semantically-meaningful image embedding via a diffusion process.

• Decoder: Learns to reconstruct an image from random noise, conditioned on a CLIP image embedding
and timestep.

• Training: A U-Net that takes in real (encoded) images that have been noised according to the DDPM forward noising
process, CLIP image embeddings, and timesteps and learns (through a diffusion process) to predict a clean image or the
noise (either output type works; explained more in future slides).

• Inference: The trained U-Net that takes in pure Gaussian noise, the predicted image embedding (from the prior), and the
timestep and outputs a final generated image.

• CLIP encoder model–a shared, fixed/non-trainable, and high-dimensional feature space
between the prior and decoder.

• Important Note: During training, we train the prior and decoder separately (with different
training objectives); we only use them together during inference, when the prior’s output
conditions the decoder.

Implementation: Phase I
Building an MVP

class TimestepEmbedder(nn.Module):
• Input: 𝑑𝑖𝑚 = 512
• Methods:

• forward(𝑡 ∈ ℝ(𝐵,1)) -> 𝑡𝑒𝑚𝑏 ∈ ℝ(𝐵,𝑑𝑖𝑚)

• Used by Prior, Decoder

class CLIPEncoder:
• Input: None; I am using a trained CLIP Encoder from OpenCLIP with an embedding

dimensionality of 512.
• Methods:

• encode_text(list of N text prompts (strings)) -> 𝑧𝑡𝑥𝑡 ∈ ℝ(𝑁,512)

• encode_images(list of N images (List[PIL.Image])) -> 𝑧𝑖𝑚𝑔 ∈ ℝ(𝑁,512)

• @property; dim() -> 512 (for ease of use for other classes to query dimensionality)

class NoiseScheduler:
• Input: 𝑇 = 1000
• Methods:

• get_beta_t(𝑡 ∈ ℤ 𝐵 , 𝜂) -> 𝛽𝑡 ∈ ℝ(𝐵)

• get_alpha_t(𝑡 ∈ ℤ(𝐵), 𝜂) -> 𝛼𝑡 ∈ ℝ(𝐵)

• get_alpha_bar_t(𝑡 ∈ ℤ(𝐵), 𝜂) -> ത𝛼𝑡 ∈ ℝ(𝐵)

class DDIMSampler:
• Input: noise scheduler (NoiseScheduler)
• Methods:

• sample(𝑚𝑜𝑑𝑒𝑙, 𝑧𝑐𝑜𝑛𝑑 ∈ ℝ 𝐵,512 , 𝑠ℎ𝑎𝑝𝑒𝑜𝑢𝑡𝑝𝑢𝑡, 𝑠𝑡𝑒𝑝𝑠 ∈ ℤ) -> 𝑥𝑡 ∈ ℝ𝑠ℎ𝑎𝑝𝑒

class Prior(nn.Module):
• Inputs: 𝑇 ∈ ℤ
• Methods:

• forward(𝑧𝑡𝑥𝑡, 𝑥𝑡, 𝑡𝑒𝑚𝑏) -> 𝜀𝜃 ∈ ℝ(𝐵, 512) (predicted CLIP embedding noise)
• One denoising step

• sample(𝑧𝑡𝑥𝑡, 𝑡) -> Ƹ𝑧𝑖𝑚𝑔 ∈ ℝ(𝐵, 512) (predicted CLIP image embedding)
• Full denoising process

class Decoder(nn.Module):
• Inputs: 𝑇 ∈ ℤ
• Methods:

• forward(𝑥𝑡 ,𝑖𝑚𝑔, 𝑧𝑖𝑚𝑔, 𝑡𝑒𝑚𝑏) -> 𝜀𝜃 ∈ ℝ(𝐵,3,𝐻,𝑊) (predicted noise in pixel space)
• sample(𝑧𝑖𝑚𝑔, 𝑠𝑡𝑒𝑝𝑠, 𝑒𝑡𝑎 ∈ [0,1)) -> 𝑥0 ∈ ℝ(𝐵,3,𝐻,𝑊) (predicted clean image in pixel space)

class PriorTransformer(nn.Module):
• Inputs: 𝑑𝑖𝑚 = 512, 𝑑𝑒𝑝𝑡ℎ = 6, ℎ𝑒𝑎𝑑𝑠 = 8
• Methods:

• forward(𝑧𝑡𝑥𝑡, 𝑧𝑡, 𝑡𝑒𝑚𝑏) ->𝜀𝜃 ∈ ℝ(𝐵, 512) (predicted CLIP embedding noise)

class DecoderUNet(nn.Module):
• Inputs: 𝑧𝑡,𝑖𝑚𝑔, 𝑧𝑖𝑚𝑔, 𝑡𝑒𝑚𝑏
• Methods:

• forward(𝑥𝑡 ,𝑖𝑚𝑔, 𝑧𝑖𝑚𝑔, 𝑡𝑒𝑚𝑏) ->𝜀𝜃 ∈ ℝ(𝐵,3,𝐻,𝑊) (predicted noise in pixel space)

class DALLe2:
• Inputs: prior_path (string), decoder_path (string), CLIP encoder (CLIPEncoder), prior_sampler

(DDIMSampler for latent), decoder_sampler (DDIMSampler for pixel space)
• Methods:

• generate(prompts (list of N string prompts), # of steps (int), 𝜂 ∈ [0,1)) -> ො𝑥0 ∈ ℝ(𝑁,3,𝐻,𝑊)

• _encode_text(prompts (list of N string prompts)) -> 𝑧𝑡𝑥𝑡 ∈ ℝ(𝑁,512)

• _encode_images(images (list of N PIL Images)) -> 𝑧𝑖𝑚𝑔 ∈ ℝ(𝑁,512)

class DALLe2Trainer:
• Inputs: model (Prior or Decoder), model_type (“prior” or “decoder”), optimizer

(torch.optim.Optimizer()), noise_scheduler (NoiseScheduler), sampler (DDIMSampler),
dataloader (torch.utils.data.DataLoader), is_aws (bool = False), save_dir (str), log_interval (int)

• Methods:
• train(num_epochs (int)) -> None
• train_one_epoch(epoch_i (int)) -> None
• train_step(batch (dict)) -> loss (float)

• batch (prior): {𝑧𝑡 ∈ ℝ 𝐵,512 , 𝑧𝑡𝑥𝑡 ∈ ℝ 𝐵,512 , 𝑡 ∈ ℤ 𝐵 , 𝜀 ∈ ℝ(𝐵,512)}
• batch (decoder): {𝑥𝑡 ∈ ℝ 𝐵,3,𝐻,𝑊 , 𝑧𝑖𝑚𝑔 ∈ ℝ 𝐵,512 , 𝑡 ∈ ℤ 𝐵 , 𝑥0 ∈ ℝ(𝐵,3,𝐻,𝑊)}

Directory Structure (for Maximum Organization)
• dalle_2_new/ # Once complete, change to dalle_2/

• models/
• dalle2.py
• prior.py
• prior_transformer.py
• decoder.py
• decoder_unet.py
• timestep_embedding.py
• clip_encoding.py

• sampling/
• ddim_sampler.py
• noise_scheduler.py

• training/
• train_prior.py
• train_decoder.py
• trained_models/

• *.pth
• data/

• abs_dataset.py
• [dataset name 1].py
• [dataset name 2].py
• …
• [dataset name N].py
• dataset.py

• inference/
• generate.py
• generations/

• *.jpg

	Slide 1: DALL·E 2-AWS Project: DALL·E 2 Planning
	Slide 2: DALL·E 2 High Level Architecture Pyramid
	Slide 3: Conceptual Overview
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: DALL·E 2 High Level Architecture Description
	Slide 9: Implementation: Phase I
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15: Directory Structure (for Maximum Organization)
	Slide 16: Implementation: Phase II

